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A field theory is built for self-similar statistical systems with both generating functional being the Mellin
transform of the Tsallis exponential and generator of the scale transformation that is reduced to the
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1. Introduction

A formal basis of the statistical theory, using quantum field
methods, is known to be a generating functional which presents
the Fourier-Laplace transform of the partition function from the
dependence on the fluctuating distribution of an order parameter
to an auxiliary field [1]. Due to the exponential character of this
transform, determination of correlators of the order parameter is
provided by ordinary differentiation of the generating functional
over auxiliary field.

Above scheme becomes inconsistent with passage from simple
systems to complex ones because the phase space gets forbidden
regions and the phase flow does not ensure statistical mixing [2].
As is known from the theory of critical phenomena, analytical de-
scription of complex systems is achieved in the presence of the
scaling invariance only [3]. Because in this case the role of a basic
function plays the power-law function instead of the exponential
one, we need in use of the Mellin transform at constructing of the
generating functional. Moreover, one should introduce the Jackson
derivative as a generator of the scaling transformation instead of
the ordinary derivation operator.
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This Letter is devoted to building a field-theoretical scheme
based on the use of both Mellin transform and Jackson deriva-
tive. The work is organized as follows. In Section 2 we adduce
necessary information from the theory of quantum calculus. Sec-
tion 3 is devoted to construction of the generating functional and
finding its connection with related correlators. As the simplest ex-
ample, the harmonic approach is studied in Section 4 to obtain
the partition function and the order parameter moments of the
first and second powers in dependence of the deformation param-
eter. In Section 5 we introduce pair of additive functional whose
expansion into deformed series yields both Green functions and
proper vertices. Moreover, we find here formal equations govern-
ing by the generating functional of systems possessing a symmetry
with respect to a field variation and being subjected to an arbitrary
constrain. Section 6 concludes our consideration.

2. Preliminaries

We begin by citing an information from the quantum calculus
[4,5] that will be needed below. A basis of this calculus is the di-
latation operator D% := A% being determined by the deformation
parameter A and the differentiation operator d; = d/9x. Expanding
formally the operator DQ into the Taylor series, it is easily to define
its action onto the power-law function: D4x" = (Ax)". Similarly, the
expansion of an analytical function f(x) shows that, in correspon-
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dence with the denomination, the operator D} arrives at the di-
latation A of the argument of this function: Dif(x) = f(Ax). A set
of eigen-functions of the dilatation operator is reduced to a homo-
geneous functions h(x) defined by the equality Dj;h(x) = A9h(x)
with the self-similarity degree q. In general case, this function
takes the form h(x) = A; (x)x? where a factor A; (x) is obeyed the
invariance condition A, (Ax) = A, (x). It is convenient to pass from
the dilatation operator to the Jackson derivative

o Dx—1

e (1)

in accordance with the commutation rule [D%, x] = D%. The action
the Jackson derivative onto the homogeneous function is given by
the relations:

Al -1
A—1"
Basic deformed number [q]; represents a generalization of the ex-
ponent of the homogeneous function.

Principle peculiarity of self-similar statistical systems is that

their consideration is based on the use of the deformed logarithm
and exponential [2]

(xD})h(x) = [ql:hx), [q): = )

1-q _

X 1 e
fq’ expg(x) := [1 +(1- q)x]+ , 3)

Ing(x) := .

where [y]+ = max(0, y). Moreover, one needs to deform the sum
and product as follows:

X@qy=x+y+1—-qxy,

1
17 (4)
here, in the last equality x, y > 0. Respectively, the deformed prod-

uct of n > 1 identical multipliers gives the expression of the de-
formed power-law function:

X®qy=[x1"14+y"0 -

L
T—

X®qX®q - ®gx=[nx!"1— (n—1)]]" (5)

n

Making use of the rules (4) shows that functions (3) are obeyed
the conditions

Ing(x®q %) =Ingx+1Ingy,  Ing(xy) =Ingx ®qIng y:
exXpg(x + ¥) = expg(X) ®q expq (),
expq (X Dq ¥) = expy(x) expy(¥). (6)

3. Generating functional

As mentioned above, the generating functional of self-similar
systems is defined by the Mellin transform

2,0} = / Z,(¢)0) 1 (dg).

N
_ i—1
¢l Ndg) =] o! " dos. (7)
i=1
where index i runs over lattice sites with number N — oco.! Ac-

cording to Ref. [2], the partition functional Zg{¢} = exp,(—S{¢})
is reduced to the deformed exponential with the exponent being

! To escape complications related to continuum space [1] we use the lattice
model.

inverse action S = S{¢} determined by the order parameter distri-
bution. Functional Z4{J} can be presented by the deformed series

(5]

)= Z[ o Z " (Ji, =20

x (Jiy =2+ (Jiy =A™, (8)

where basic deformed factorial [n];! = [1]x[2]1...[n], is deter-
mined by the product of related numbers (2), while the coefficients

Zm, = (Ju D}, ) Ui D],) - (Ju D), )2 “‘hl ,,,,, oo (9)

are given by the Jackson derivative (1). By definition,

1‘[¢”‘ "=o@n ][] o)
ki

A\ )1
(]lD 1)¢ |_],=1 ‘l)(p1

where one denotes o (¢;) = Iny_; (¢;). Then, the Jackson derivation
of the functional (7)

(JiD}) 2ot 1}, / Zy(gloi@n dei [ [ o dor

k#i
Z/Uz’((bi)zq((bi)d% (11)

arriving at the function Z4(¢;) := [ Z4{ qﬁ}]_[k#,qﬁ]" ]dqﬁk, yields
the first moment of the deformed order parameter:

S=(o@))=2;" / Ing_;. () Z4 (1) depy,

2= 21| = [ Zal0)00). (12)
It represents the Tsallis entropy at condition that a field ¢; is re-
duced to the inverse probability to take a statistical state on a site
i. Respectively, the kernel (9) determines the deformed correlator
of an arbitrary order n

”fzqwl,...,asn) [ o @i déi,

m=1

=277z, (13)

i1...in

(0(@1)...0 )=

-1
o o do

where the function Zg(¢1, ...
is used.

s #n) = [ Zg{d} [Tiosiy ..

4. Harmonic approach

Within the standard field-theoretical scheme [1], the action
S =Sp+ V is split into an unharmonic part V = V{¢} and the
quadratic form So := 515 >"; ¢ determined by a variance A2. In
accordance with Eq. (6), the partition functional is determined
with the equality exp,(—S) = exp,(—So) ®q expy(—V) where ex-
pansion over unharmonism with using the rule (10) gives the ex-
pression

Zol)y =exp (VD)) ®¢ 201} (14)

of the generating functional
Z1)i= [ expy[-S(61]o) 140}

_ f expy[—S(o1] exp|J In(@)} {dIn()) (15)
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in terms of the bare part Zéo){]} related to the action Sg. The prin-
ciple difference of the equality (14) from corresponding expression
for simple systems consists in deformation of both exponential op-
erator of perturbation and its action onto the bare functional. Ex-
plicit expression of the generating functional (14) yields expansion
into the deformed series (8) with the coefficients (9) determining
the correlators (13).

Within framework of the harmonic approach, when the ac-
tion Sp = 217 Z,N=1 ¢i2 is reduced to the sum of the N indepen-

dent constituents, the functional Zéo){ J} is expressed throughout
the site functions zc(lo)( Ji) by means of the equality Zéo) {J} =
zf]O)(h) ®q zéO)(]z) ®q - Qg zflo)(]N). Within the mean field ap-
proach, all multipliers coincide so that the use of Eq. (5) arrives

at the expression of the generating functional (15) in terms of the
site functions:

Ing[Z$2(]}] = NIng[2” ()] (16)

As expected, the deformed logarithm of the partition functional
proves to be additive value whose magnitude is determined by the
cite constituent

©n_1 24° Nz( l) =
Pn=3(7%) #(ed) e=17L (17)

Here, the B-function decays as J~! near the point J = 0 trans-
forming into the power-law dependence J~2 in the limit J] — oco.
As a result, the bare function (17) decays fast with the J growing
in vicinity of the point J/ =0 and then increases exponentially. At
J =1, the dependence (17) gives the deformed partition function
per one site

2 =\/42/2(1 - 9)B(Q.1/2). (18)

As a result, within the zero approach, the mean order parameter
(12) takes the form

(0) =
3<0>:_(A_1)71{1_[w} q}. (19)
Ing(z9 (1)) 1+

In the information theory, the principle role is played by the
Fisher matrix whose elements represent pair correlators of deriva-
tives of the logarithm of the probability distribution function with
respect to parameters of this function (in difference of the Tsal-
lis entropy whose value gives a global measure of uncertainty, the
Fisher matrix determines a local measure of information stored by
the system) [6]. In the absence of a space correlations, such a mea-
sure is given by the moment of the second order C = ([0 (¢;)]?) for
which the use of Eqs. (13) and (9) arrives at the expression

1

cO_ 1)_2{1 ~ z[lnq[zéO)(A)] ] =
Ing(z (1)) J+

©) 3 2y17 1
+ [lnq[zq(o)()\ )]j| ' } (20)
Ing(zy7 (1)) d+

At determination of the dependence of both moments (19) and
(20) on the deformation A, one needs to take into account that
parameter ¢ is not free because a self-similarity condition restricts
its value by the equation [7]

(21— (- 1) = - DA (21)

As a result, variation of the deformation parameter A from 1 to
oo arrives at growing the exponent g since 0.382 to 0.5. Accord-
ing to Figs. 1 and 2, hereby the specific partition function z((lo) ~1

z (©)
q

1,054

1,04

1,03 T T T T T T T T
2 4 6 8 A

Fig. 1. Partition function (18) in dependence of the deformation parameter.

slightly increases, while the mean order parameter (19) keeps the
zero value before the deformation parameter A = 6.39 and then
increases monotonically. In contrast to this, the second order mo-
ment (20) displays slight maximum in the region A > 1 that after
downward excursion transforms into growing branch. From the
point of view of the information theory [6], this means that before
the value A = 6.39 a global measure of the information uncertainty
S does not appears, while the local measure of information stored
by the system C increases appreciably beginning since dilatations
A~3.

What about the correlators of the higher orders, in thermo-
dynamic limit N — oo, they are expressed in terms of the lower
moments (19) and (20) with help of different uncouplings. As a
result, the use of expression (14) allows one to build up a pertur-
bation theory in analogy with the standard scheme [1].

5. Field theory relations

If a system consists of macroscopically independent parts 1
and 2, then related actions are connected with the additivity con-
dition S142 = S1 + Sz, whereas the deformed partition functional
(15) whose kernel is determined by the expression exp,(—S1+2) =
expy(—S1) ®q expy(—S2) is obeyed the deformed multiplicativity
condition Z]*2 = Z] ®; ZZ. Therefore, it is convenient to pass to
the generating functional

Gq ==1Ing(Zy) (22)

determined on the basis of the deformed logarithm that obeys the
rules (6). As a result, the additivity condition gc}ﬂ = Q(} + gg be-
comes to be satisfied so that the functional G; = Gq{J} can be un-
derstood as a thermodynamic potential. Because the latter depends
on an auxiliary field J, one should use the Legendre transform

Ly{¢} =" Jioi — GglJ}. 01 =Inp_q(@y) (23)

to pass to a dependence on the order parameter ¢. This transform
connects conjugated pair of thermodynamic potentials Gq{J} and
I'y{¢} whose using arrives at the state equations

0i=D}Gq & Ji=D} Iy (24)

Similarly to the partition functional (7), above potentials are pre-
sented by the following deformed series:

o] 1 .
ANEDY T G T i (25)
n=1

1.0
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Fig. 2. Lower moments (19) and (20) of the deformed order parameter.

o¢]
1 m
Fq{¢}=ZW Z 1—',‘14__1‘”77:‘1 s Nigs
n=1

i1...0n
Dy = Ojpy — A1V (26)

where in difference of the series (8) terms with index n =0 are
absent (moreover, in Eq. (25) expansion is carried out over the
field J;, itself instead of the differences J; — A™~!, while in
Eq. (26) appears the difference 7;,, = o, —Am*‘Qfl), m=1,...,n).
With using the state equation (24), it is easily to convince that
coefficients of the series (25) and (26) are connected with the
same relations which take place in simple systems [1]. Within
the diagrammatic representation, the kernels gfl”?“in correspond to
n-particle Green functions, while 1"15")
related [1].

Concluding this section, let us show that similarly to simple
systems the generating functional (15) obeys a set of formal equa-
tions. The first of them is related to the system symmetry with
respect to the field variation §1In(¢;) = € fi{¢} being proportional
to an arbitrary functional f;j{¢} in the limit € — 0. Due to this
variation the integrand of the functional (15) obtains the mul-
tiplier 1 + e[—epo(—S)&S/a In(¢i) + Jilfi, whereas the Jacobian
of the passage from the variable In(¢;) to In(¢;) + 8 In(¢;) equals
1+ €0 f;/9In(¢;) (the sum over repeated indices is meant). Col-
lecting all multipliers before the factor €, in accordance with the
invariance condition of the functional (15) one finds:

(ki loes (sl D aman a1

a fi 1) _
) {EDZ"{” =0 @7

At fi{¢} = const, this equation is simplified to take the form
following immediately from the functional (15) after variation over
the integration variable In(¢).

The second of the pointed equations allows one to take into
account an arbitrary condition F;{ln(¢)} = 0 imposed on fields
to be found. Accounting this condition is achieved by introduc-
ing the J-functional &§{F} into integrand of the last expression
(15). As a result, the generating functional takes the elongated
form

; determine proper vertices
n

2Py = / exp,[~S()]
x exp{JIn(¢) + AF{In(¢)} }{dr}{dIn(¢)}. (28)

Variation of this expression over an auxiliary field A; arrives at the
desired equation

I3 1. _

6. Concluding remarks

Following the standard scheme [1], we have considered the
field theory of self-similar statistical systems whose states are dis-
tributed in accordance with the Tsallis exponential law. Because
this distribution is characterized by the power-law tail, we have
used the generating functional (7) based on the Mellin transform
and the Jackson derivative (1) as the generator of the scaling trans-
formation. Along this line, the role of the order parameter plays
the mean value (12) of the deformed logarithm of the amplitude
of a hydrodynamic mode. The use of the harmonic approach shows
the specific partition function (18) slightly increases, the mean or-
der parameter (19) keeps the zero value before the deformation
A > 6 and then increases monotonically, while the second order
moment (20) displays slight maximum in the region A > 1 and
after downward excursion transforms into growing branch. Apart
from the generating functional (7), we have introduced pair of the
additive functional (22) and (23) whose expansions into deformed
series (25) and (26) yield both Green functions and proper vertices.
To take into account constraints and symmetry of the statistical
system we have obtained Eqgs. (27) and (29) for the generating
functional.

The special peculiarity of our consideration is that the kernel of
the Mellin transform (7) is reduced to the Tsallis exponential (3).
But it is worthwhile to stress that the Tsallis deformation is not
sole of possible procedures to obtain a distribution with power-law
behavior. Another possibility is known to be given by the basic de-
formed distribution [8] that is invariant with respect to action of
the Jackson derivative.> Moreover, generalized three-parameter de-
formation procedure have been elaborated recently by Kaniadakis
to obtain the whole set of power-law tailed distributions [9]. Build-
ing of generalized field theory based on above pointed distribu-
tions is in progress.
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